Subnetting
Subnetting allows you to create multiple logical networks that exist within a single Class A, B, or C network. If you do not subnet, you are only able to use one network from your Class A, B, or C network, which is unrealistic.
Each data link on a network must have a unique network ID, with every node on that link being a member of the same network. If you break a major network (Class A, B, or C) into smaller subnetworks, it allows you to create a network of interconnecting subnetworks. Each data link on this network would then have a unique network/subnetwork ID. Any device, or gateway, connecting n networks/subnetworks has n distinct IP addresses, one for each network / subnetwork that it interconnects.
In order to subnet a network, extend the natural mask using some of the bits from the host ID portion of the address to create a subnetwork ID. For example, given a Class C network of 204.17.5.0 which has a natural mask of 255.255.255.0, you can create subnets in this manner:
204.17.5.0 - 11001100.00010001.00000101.00000000 255.255.255.224 - 11111111.11111111.11111111.11100000 --------------------------|sub|----
By extending the mask to be 255.255.255.224, you have taken three bits (indicated by "sub") from the original host portion of the address and used them to make subnets. With these three bits, it is possible to create eight subnets. With the remaining five host ID bits, each subnet can have up to 32 host addresses, 30 of which can actually be assigned to a device since host ids of all zeros or all ones are not allowed (it is very important to remember this). So, with this in mind, these subnets have been created.
204.17.5.0 255.255.255.224 host address range 1 to 30 204.17.5.32 255.255.255.224 host address range 33 to 62 204.17.5.64 255.255.255.224 host address range 65 to 94 204.17.5.96 255.255.255.224 host address range 97 to 126 204.17.5.128 255.255.255.224 host address range 129 to 158 204.17.5.160 255.255.255.224 host address range 161 to 190 204.17.5.192 255.255.255.224 host address range 193 to 222 204.17.5.224 255.255.255.224 host address range 225 to 254
Note: There are two ways to denote these masks. First, since you are using three bits more than the "natural" Class C mask, you can denote these addresses as having a 3-bit subnet mask. Or, secondly, the mask of 255.255.255.224 can also be denoted as /27 as there are 27 bits that are set in the mask. This second method is used with CIDR. With this method, one of these networks can be described with the notation prefix/length. For example, 204.17.5.32/27 denotes the network 204.17.5.32 255.255.255.224. When appropriate the prefix/length notation is used to denote the mask throughout the rest of this document.
The network subnetting scheme in this section allows for eight subnets, and the network might appear as:
Figure 2
Notice that each of the routers in Figure 2 is attached to four subnetworks, one subnetwork is common to both routers. Also, each router has an IP address for each subnetwork to which it is attached. Each subnetwork could potentially support up to 30 host addresses.
This brings up an interesting point. The more host bits you use for a subnet mask, the more subnets you have available. However, the more subnets available, the less host addresses available per subnet. For example, a Class C network of 204.17.5.0 and a mask of 255.255.255.224 (/27) allows you to have eight subnets, each with 32 host addresses (30 of which could be assigned to devices). If you use a mask of 255.255.255.240 (/28), the break down is:
204.17.5.0 - 11001100.00010001.00000101.00000000 255.255.255.240 - 11111111.11111111.11111111.11110000 --------------------------|sub |---
Since you now have four bits to make subnets with, you only have four bits left for host addresses. So in this case you can have up to 16 subnets, each of which can have up to 16 host addresses (14 of which can be assigned to devices).
Take a look at how a Class B network might be subnetted. If you have network 172.16.0.0 ,then you know that its natural mask is 255.255.0.0 or 172.16.0.0/16. Extending the mask to anything beyond 255.255.0.0 means you are subnetting. You can quickly see that you have the ability to create a lot more subnets than with the Class C network. If you use a mask of 255.255.248.0 (/21), how many subnets and hosts per subnet does this allow for?
172.16.0.0 - 10101100.00010000.00000000.00000000 255.255.248.0 - 11111111.11111111.11111000.00000000 -----------------| sub |-----------
You are using five bits from the original host bits for subnets. This allows you to have 32 subnets (25). After using the five bits for subnetting, you are left with 11 bits for host addresses. This allows each subnet so have 2048 host addresses (211), 2046 of which could be assigned to devices.
Note: In the past, there were limitations to the use of a subnet 0 (all subnet bits are set to zero) and all ones subnet (all subnet bits set to one). Some devices would not allow the use of these subnets. Cisco Systems devices allow the use of these subnets when theip subnet zero command is configured.
Examples
Sample Exercise 1
Now that you have an understanding of subnetting, put this knowledge to use. In this example, you are given two address / mask combinations, written with the prefix/length notation, which have been assigned to two devices. Your task is to determine if these devices are on the same subnet or different subnets. You can do this by using the address and mask of each device to determine to which subnet each address belongs.
DeviceA: 172.16.17.30/20 DeviceB: 172.16.28.15/20
Determining the Subnet for DeviceA:
172.16.17.30 - 10101100.00010000.00010001.00011110 255.255.240.0 - 11111111.11111111.11110000.00000000 -----------------| sub|------------ subnet = 10101100.00010000.00010000.00000000 = 172.16.16.0
Looking at the address bits that have a corresponding mask bit set to one, and setting all the other address bits to zero (this is equivalent to performing a logical "AND" between the mask and address), shows you to which subnet this address belongs. In this case, DeviceA belongs to subnet 172.16.16.0.
Determining the Subnet for DeviceB:
172.16.28.15 - 10101100.00010000.00011100.00001111 255.255.240.0 - 11111111.11111111.11110000.00000000 -----------------| sub|------------ subnet = 10101100.00010000.00010000.00000000 = 172.16.16.0
From these determinations, DeviceA and DeviceB have addresses that are part of the same subnet.
Sample Exercise 2
Given the Class C network of 204.15.5.0/24, subnet the network in order to create the network in Figure 3 with the host requirements shown.
Figure 3
Looking at the network shown in Figure 3, you can see that you are required to create five subnets. The largest subnet must support 28 host addresses. Is this possible with a Class C network? and if so, then how?
You can start by looking at the subnet requirement. In order to create the five needed subnets you would need to use three bits from the Class C host bits. Two bits would only allow you four subnets (22).
Since you need three subnet bits, that leaves you with five bits for the host portion of the address. How many hosts does this support? 25 = 32 (30 usable). This meets the requirement.
Therefore you have determined that it is possible to create this network with a Class C network. An example of how you might assign the subnetworks is:
netA: 204.15.5.0/27 host address range 1 to 30 netB: 204.15.5.32/27 host address range 33 to 62 netC: 204.15.5.64/27 host address range 65 to 94 netD: 204.15.5.96/27 host address range 97 to 126 netE: 204.15.5.128/27 host address range 129 to 158
Casino Bonus & Promotions 2021
ReplyDeleteGet the 우리계열 latest promotions and offers at 먹튀 없는 사이트 CasinoBonusDos.org. Get your 승인 전화 없는 사이트 bonus codes and promotions 블랙잭무기 2021. Get latest 바인드 토토 promotions and offers.